Write variant tensors for training a CNN to filter variants
Category Variant Filtering
Overview
Write variant tensors for training a Convolutional Neural Network (CNN) for filtering variants. After running this tool, a model can be trained with the CNNVariantTrain tool.Inputs
- The input variants to make into tensors. These variant calls must be annotated with the standard best practices annotations.
- The truth VCF has validated variant calls, like those in the genomes in a bottle, platinum genomes, or CHM VCFs. Variants in both the input VCF and the truth VCF will be used as positive training data.
- The truth BED is a bed file define the confident region for the validated calls. Variants from the input VCF inside this region, but not included in the truth VCF will be used as negative training data.
- The tensor-name argument determines what types of tensors will be written. Set it to "reference" to write 1D tensors or "read_tensor" to write 2D tensors.
- The bam-file argument is necessary to write 2D tensors which incorporate read data.
Outputs
- data-dir This directory is created and populated with variant tensors. it will be divided into training, validation and test sets and each set will be further divided into positive and negative SNPs and INDELs.
Usage example
Write Reference Tensors
gatk CNNVariantWriteTensors \ -R reference.fasta \ -V input.vcf.gz \ -truth-vcf platinum-genomes.vcf \ -truth-bed platinum-confident-region.bed \ -tensor-name reference \ -output-tensor-dir my-tensor-folder
Write Read Tensors
gatk CNNVariantWriteTensors \ -R reference.fasta \ -V input.vcf.gz \ -truth-vcf platinum-genomes.vcf \ -truth-bed platinum-confident-region.bed \ -tensor-name read_tensor \ -bam-file input.bam \ -output-tensor-dir my-tensor-folder
CNNVariantWriteTensors specific arguments
This table summarizes the command-line arguments that are specific to this tool. For more details on each argument, see the list further down below the table or click on an argument name to jump directly to that entry in the list.
Argument name(s) | Default value | Summary | |
---|---|---|---|
Required Arguments | |||
--output-tensor-dir |
null | Directory of training tensors. Subdivided into train, valid and test sets. | |
--reference -R |
null | Reference fasta file. | |
--truth-bed |
null | Confident region of the validated VCF file. | |
--truth-vcf |
null | Validated VCF file. | |
--variant -V |
null | Input VCF file | |
Optional Tool Arguments | |||
--arguments_file |
[] | read one or more arguments files and add them to the command line | |
--bam-file |
"" | BAM or BAMout file to use for read data when generating 2D tensors. | |
--gcs-max-retries -gcs-retries |
20 | If the GCS bucket channel errors out, how many times it will attempt to re-initiate the connection | |
--help -h |
false | display the help message | |
--max-tensors |
1000000 | Maximum number of tensors to write. | |
--tensor-type |
reference | Name of the tensors to generate. | |
--version |
false | display the version number for this tool | |
Optional Common Arguments | |||
--gatk-config-file |
null | A configuration file to use with the GATK. | |
--QUIET |
false | Whether to suppress job-summary info on System.err. | |
--TMP_DIR |
[] | Undocumented option | |
--use-jdk-deflater -jdk-deflater |
false | Whether to use the JdkDeflater (as opposed to IntelDeflater) | |
--use-jdk-inflater -jdk-inflater |
false | Whether to use the JdkInflater (as opposed to IntelInflater) | |
--verbosity |
INFO | Control verbosity of logging. | |
Advanced Arguments | |||
--annotation-set |
best_practices | Which set of annotations to use. | |
--channels-last |
true | Store the channels in the last axis of tensors, tensorflow->true, theano->false | |
--showHidden |
false | display hidden arguments |
Argument details
Arguments in this list are specific to this tool. Keep in mind that other arguments are available that are shared with other tools (e.g. command-line GATK arguments); see Inherited arguments above.
--annotation-set / -annotation-set
Which set of annotations to use.
String best_practices
--arguments_file / NA
read one or more arguments files and add them to the command line
List[File] []
--bam-file / -bam-file
BAM or BAMout file to use for read data when generating 2D tensors.
String ""
--channels-last / -channels-last
Store the channels in the last axis of tensors, tensorflow->true, theano->false
boolean true
--gatk-config-file / NA
A configuration file to use with the GATK.
String null
--gcs-max-retries / -gcs-retries
If the GCS bucket channel errors out, how many times it will attempt to re-initiate the connection
int 20 [ [ -∞ ∞ ] ]
--help / -h
display the help message
boolean false
--max-tensors / -max-tensors
Maximum number of tensors to write.
int 1000000 [ [ 0 ∞ ] ]
--output-tensor-dir / -output-tensor-dir
Directory of training tensors. Subdivided into train, valid and test sets.
R String null
--QUIET / NA
Whether to suppress job-summary info on System.err.
Boolean false
--reference / -R
Reference fasta file.
R String null
--showHidden / -showHidden
display hidden arguments
boolean false
--tensor-type / -tensor-type
Name of the tensors to generate.
The --tensor-type argument is an enumerated type (TensorType), which can have one of the following values:
- reference
- read_tensor
TensorType reference
--TMP_DIR / NA
Undocumented option
List[File] []
--truth-bed / -truth-bed
Confident region of the validated VCF file.
R String null
--truth-vcf / -truth-vcf
Validated VCF file.
R String null
--use-jdk-deflater / -jdk-deflater
Whether to use the JdkDeflater (as opposed to IntelDeflater)
boolean false
--use-jdk-inflater / -jdk-inflater
Whether to use the JdkInflater (as opposed to IntelInflater)
boolean false
--variant / -V
Input VCF file
R String null
--verbosity / -verbosity
Control verbosity of logging.
The --verbosity argument is an enumerated type (LogLevel), which can have one of the following values:
- ERROR
- WARNING
- INFO
- DEBUG
LogLevel INFO
--version / NA
display the version number for this tool
boolean false
GATK version 4.0.7.0 built at 25-30-2019 01:30:00.
0 comments
Please sign in to leave a comment.